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EXECUTIVE SUMMARY

STRATEGIC SCHEDULING OF
INFRASTRUCTURE REPAIR AND

MAINTENANCE: VOLUME 1—
DECISION TREE FOR STEEL

BRIDGE PAINTING

Introduction

INDOT seeks to apply appropriate treatments for its bridge and

pavement assets at the right time. Even for the right treatment,

improper timing can have consequences: premature application

(treatment is applied too early) could mean wasteful spending even

if users enjoy the benefits of higher asset condition; deferred or

delayed application (treatment is applied too late) could result in

higher user costs due to poor condition, and even reduced asset

longevity.

The objectives of this research were to establish the optimal

condition or timing for each of the standard maintenance and

rehabilitation (M&R) treatment types typically used by INDOT;

quantify the consequences of departures from such optimal con-

ditions or timings; and establish the optimal M&R treatment sche-

dule for each asset family. The study focused on:

1. Painting of steel bridges

2. Bridge deck maintenance and rehabilitation

3. Pavement maintenance, rehabilitation, and replacement

Findings

1. The study established a cost-effective way of timing the

painting of steel highway bridges.

a. Deterioration models were developed for painted steel

superstructures of highway bridges on routes of various

functional classes.

b. A painting cost model was developed using INDOT’s

painting contract records. Scenario analyses were conducted

by varying the relative weights of agency and user costs.

c. A painting decision tree was developed to serve as a

framework that would enable INDOT to consider other

paint maintenance treatment types—namely, spot repair/

painting and overcoating. Based on the results, it would

be appropriate for INDOT to continue applying complete

recoating at trigger value 4, or to include spot repair and

overcoating for its highway bridge steel superstructures.

2. The study established appropriate performance thresholds for

triggering bridge deck M&R activities.

a. Statistical models were developed to describe bridge deck

and wearing surface deterioration, and performance jump

(condition improvement) due to deck overlays. The agency

cost models for latex-modified concrete (LMC) and

polymeric overlays took into account the pre-treatment

deck condition and the impact of scale economies. Two

types of bridge user costs were considered: travel time costs

due to work zone delays and the incremental vehicle

operating costs (VOCs) during normal operations due to

the increased roughness of the bridge deck surface.

b. A life-cycle cost analysis optimization framework was

proposed. The analysis used data for bridges on the state-

owned routes in Indiana. Various weights were assigned

to the agency and user costs for sensitivity analysis purposes.

The results indicated that different weighting would have

an impact on the optimal trigger or the threshold asso-

ciated with the lowest equivalent uniform annual cost.

In addition, the life-cycle condition-based deck M&R

strategies based on different triggers were presented.

c. Some modifications are recommended to be made to the

original decision tree (DTREE) used in the Indiana Bridge

Management System (IBMS) in order to incorporate the trig-

gers for specific deck overlay treatments in the DTREE flow

paths.

3. The study established a framework for determining the appro-

priate (condition-based) performance triggers for pavement

maintenance, rehabilitation, and replacement activities.

a. Fourteen types of treatments were considered. Statistical

models were developed in terms of performance jump due

to each maintenance and rehabilitation (M&R) treatment.

Models were also developed for post-treatment performance,

agency costs, and user costs.

b. An optimization approach was proposed to determine the

optimal International Roughness Index (IRI) trigger for

each type of treatment on different families of assets that

maximize the cost-effectiveness. The life-cycle cost analysis

incorporates both agency cost (AC) and user cost (UC).

Sensitivity analysis indicates that changing the relative

weights of agency and user costs has a significant impact on

the optimal trigger. The results of sensitivity analysis in

terms of other important variables (e.g., AC:UC ratio, traffic

load, discount rate, IRI upper bound, and pre-treatment

performance) are also provided. The results show how the

change in these factors can influence the optimal condition

trigger results. This provides asset managers with greater

flexibility in making M&R decisions.

c. The study established a framework to determine the opti-

mal schedules for multiple treatments and recommended

appropriate long-term M&R strategies for flexible and

rigid pavements on different road functional classes.

Implementation

The methodologies used in this study can help INDOT and

other agencies enhance their M&R decisions in terms of the

performance threshold of individual assets, as well as long-term

M&R scheduling. The findings for each of the three parts of this

study provide INDOT asset managers with an enhanced basis for

making programming decisions and estimating the consequences of

premature or delayed treatments. Possible limitations are:

1. The optimal triggers for pavements are given for surface

roughness (IRI). Other important performance indicators

such as rutting and cracking are not considered in this study

due to the lack of data availability.

2. The lack of quality data limited this study to finding only

general relationships between the variables. As more accurate

and reliable data become available, the models can be refined,

creating a stronger basis for optimal triggers and long-term

M&R strategies.
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1. INTRODUCTION

1.1 Background

Highway agencies seek to apply appropriate treat-
ments at the right time. Even for the correct treatment,
improper timing can have consequences: premature
application could mean wasteful spending even if users
enjoy the benefits of higher pavement condition; defer-
red or delayed application could result in higher user
costs due to poor condition, and even reduced asset
longevity. The present study was carried out to esta-
blish a cost-effective way of painting steel highway
bridges. Using nine years of steel bridge paint condition
rating data and other variables collected from Indiana
Department of Transportation and other agencies,
deterioration models were developed for painted steel
highway bridges on NHS and NNHS routes. The models
were used to compute the effectiveness of current
INDOT practice for painting steel highway bridges.
Also, a painting cost model was developed to estimate
agency unit cost values. In order to include user-related
costs in the state of practice, scenarios were tested based
on the relative weights for agency cost and user cost.
After evaluating the current practice, a painting decision
tree was developed. Based on the results, it would be
more cost-effective to include spot repair and overcoating
in the management of steel highway bridges based on the
proposed painting strategy.

1.2 Organization of Volume 1

Volume 1 has five chapters. Chapter 1 discusses the
background and problem statement, study objectives
and the organization of this report. Chapter 2 provides
a detailed literature review covering steel bridge paint-
ing and bridge joints. This chapter will focus on the
state of practice of steel bridge painting, methodologi-
cal frameworks available for modeling painting activ-
ities on steel highway bridges, and the cost for painting
steel highway bridges. In addition, the effectiveness con-
cept of measuring the benefits of an infrastructure would
be presented. Chapter 3 presents the adopted methodol-
ogy, data collection efforts, developed models for steel
bridge painting and cost models for steel highway bridge
painting activities. The analysis and results from the
adopted method are presented in Chapter 4. The report’s
conclusions and recommendations are discussed in
Chapter 5.

2. LITERATURE REVIEW

2.1 Introduction

In order to develop a decision tree for steel bridge
painting, this chapter reviews the various steel bridge
paint treatment types, some factors that influence steel
bridge paint deterioration, models from past studies
that have been used to investigate the pattern of steel
bridge paint deterioration, and the costs of steel bridge
painting activities. Also, this chapter investigates the
factors that affect the effectiveness of steel highway

bridge paints, the cost values, and how to establish cost-
effective trigger values to ensure that steel bridge paints
are adequately managed.

2.2 Steel Bridge Painting Treatment Strategies

The American Society for Testing Materials (ASTM)
recommends three broad treatment types for steel
bridge painting: spot painting, overcoating and com-
plete recoating. These treatment types are intended to
protect and enhance the appearance of steel highway
bridges. The next sections discuss the three various
types of treatments.

2.2.1 Spot Painting

Spot repair or painting for a steel highway bridge
surface is considered when there is a small section on
the bridge surface that is rusted or delaminated. A sec-
tion can be considered for spot painting when spot
rusting occurs on a steel highway bridge surface. Spot
rusting takes place when the majority of the rusting is
focused in a few localized areas of the painted section.
The rusted or delaminated surface section can be repai-
red by painting the identified spots.

Spot painting is only applicable to existing coatings
that have limited corrosion, by area, and adequate
adhesion. In this type of treatment, painting is done on
isolated rust spots, observed on the bridge, after which
these rust spots are eradicated. The difficulty associated
with this type of treatment is that the contractor may
have difficulty ensuring that the adjacent coatings, which
are in good condition, are not damaged when the isolated
rust spots are being removed. In addition, a better coat-
ing can be achieved by ensuring that there is a transition
zone between the edges of the blast-cleaned areas and
the existing coatings. There should be a quality control
check to ensure that there is an increase in the mechanical
connection between the existing and the new coating.
The selection of the proper treatment type at the most
economic time is very important in steel highway bridge
coating maintenance (Tam & Stiemer, 1996). This type
of steel bridge paint treatment applies to defects, which
have deteriorated to a specific condition.

The possible degrees of spot rusting that can occur
on a steel highway bridge section are presented in
Figure 2.1. In the figure, a rust grade of 9-S indicates
that the percentage of surface area rusted is greater than
0.01% and no more than 0.03%, while a rust grade of 4-S
indicates that the surface has rust condition between 3%

and 10% of the total steel bridge surface area. Based on
the rust conditions illustrated in Figure 2.1, the recom-
mended actions to be taken for each of these scenarios on
a steel bridge surface would be to spot repair/paint.

2.2.2 Overcoating

Overcoating or encapsulation is carried out when the
total defective painted area on a steel highway bridge
surface is removed and the surface is painted with a

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/12 1
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new system that is congruous with the present coating
system. This painting strategy has application constraints
that are similar to spot repair or painting. The primary
concern associated with overcoating is the possibility of
shrinkage throughout the curing action of the new coat-
ing system. If the new system has excessive shrinkage, it
would result in cracking when applied close to the exist-
ing coating system that is in good condition. The second
concern in relation to overcoating is the softening of the
underlying layer from solvent penetration. The agency
or contractor can significantly reduce this challenge by
adopting or applying coatings with high solids content.
Kline and Corbett (1992) found that five different types
of coatings, when tested for excessive shrinkage, perfor-
med far better on steel surfaces cleaned with air blow-
down cleaning method compared to surfaces cleaned
with brush-off blast-cleaning.

In the past, corrosion experts assumed that an elevated
degree of surface preparation ensured the removal of
loose rust, thereby achieving an enhanced perfor-
mance. However, this assumption has been found to
be inaccurate. In accordance with ASTM Standard
0610 (Table 2.1), it was found that surfaces cleaned by
brush-off blast (Table 2.2) have performances rang-
ing from 4 to 5, while these values are from 5 to 7 for
air-blowdown cleaning (Kline & Corbett, 1992). This
unexpected result was attributed to the shattering of
the alkyd paint due to the impact of the abrasives.
Thus, the results from the ASTM study indicate that
limited surface preparation is recommended, compared
to a more costly brush-off blast for coating systems.
In addition to improved performance, expense and health
concerns were resolved due to the removal of lead-
contaminated abrasives.

Overcoating a steel highway bridge prior to the
appearance of significant rusting on the bridge surface
would be uneconomical and could damage the existing
coating, due to the eventual delamination and crack-
ing of the heavy buildup of the new coating over the
existing one.

2.2.3 Complete Repainting

The previous sections discussed two (spot repair and
overcoating) of the three painting types, and this
section will focus on complete repainting or recoating.
Complete repainting is the proper treatment type when
the existing coating system has deteriorated until struc-
tural damage to corrosion is imminent. At this worst
condition of the existing coating system, the entire steel
highway bridge surface is cleaned before application of
the new coating system. Although some highway agencies
practice this treatment strategy and replicate it during the
bridge’s life, it has been found to be less-cost effective
than to spot paint or overcoat, due to the disposal of
lead-contaminated abrasives and the excessive cost of the
containment (Tam & Stiemer, 1996).

2.3 Steel Bridge Painting Costs

The cost associated with painting steel highway
bridges is a critical component in the management of
highway infrastructures, especially bridges. During the
past decades, the costs of maintenance and rehabilita-
tion (M&R) of existing coating systems for steel bridges
continued to increase. The increase was attributed to three
broad elements: environmental constraints, reduced gov-
ernmental funding resulting in suboptimal maintenance

TABLE 2.1
Coating Systems Based on ASTM Standards

ASTM Standard Description

D610 Test methods for evaluating degree of rusting on painted steel surfaces

D660 Test method for evaluating degree of checking of exterior paints

D661 Test method for evaluating degree of cracking of exterior paints

D662 Test method for evaluating degree of erosion of exterior paints

D4214 Test methods for evaluating the degree of chalking of exterior paint films

D5043 Test methods for field identification of coatings

D5064 Practice for conducting a patch test to assess coating compatibility

D5065 Guide for assessing the condition of aged coatings on steel surfaces

TABLE 2.2
Prior Painting Cleaning Methods

SSPC Standard Cleaning Method Description

SP-1 Solvent cleaning Removes oil, grease, wax, dirt

SP-2 Hand tool cleaning Removes loose rust, mill scale, and coating

SP-3 Power tool cleaning Removes loose rust, mill scale, and coating

SP-5 White-metal blast Complete removal of all visible residue

SP-6 Commercial blast Minimum for most government agencies for bridge maintenance,

leaves 66% of surface area free of all visible residue

SP-7 Brush-off blast Does not remove tightly adhering mill scale, rust, or old coating

SP-10 Near-white metal blast 95% free of all visible residue

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/12 3



schedules, and improved safety standards for workers
(Zayed, Chang, & Fricker, 2002).

In many highway agencies across the USA, asset
managers responsible for bridges tend to allow the
coating systems on steel highway bridges to deteriorate
until they have to be completely repainted. (Dadson,
2001; Tam & Stiemer, 1996). For example, from the
data on steel highway bridges painted in Indiana, the
service life (i.e., time between treatments) of the paint
ranges from 20 to 35 years, depending on the environ-
mental conditions.

In Figures 2.2 and 2.3, it can be observed that steel
bridge paint service life ranges from as low as 11 years

to a high of 21 years, depending on the traffic and envi-
ronmental conditions. Knowledge of the service life
for steel bridge paint would enable the agency to deve-
lop better strategic schedules, based on available cost
information.

2.3.1 Agency and User Costs

In order to consider a long-term view of managing
steel highway bridges, it would be appropriate to include
M & R activities during the service life of the painted
steel bridge. This calls for a life-cycle cost analysis
(LCCA) for steel highway bridge painting. The broad

Figure 2.2 Bridge paint service life versus region (Dadson, 2001).

Figure 2.3 Virginia environmental regions (Dadson, 2001).

4 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/12



objective of LCCA is to establish all the relevant costs
associated with the corrosion protection of a steel high-
way bridge throughout the service life. Applying LCCA
to different treatment strategy combinations would indi-
cate the alternative that has the treatment schedule with
the least cost. To implement LCCA for steel highway
bridges, knowledge of steel bridge deterioration models,
and the costs associated with M & R of the steel bridge
are essential.

The cost of painting steel highway bridges ought to
consider both user and agency costs. Agency cost is the
cost incurred for the painting of the bridge, and cost
of maintenance of traffic. The user cost components for
painting a steel highway bridge are associated with
detours, work zone duration, work zone safety, and
delays. The highway user may incur higher vehicle
operating costs, higher likelihood of crashes at work
zones, and loss of productivity due to delays.

Currently, many highway agencies do not include
user cost in their analysis, which results in the under-
estimation of total cost associated with steel bridge
coating system management. Also, in the absence of
user cost in the analysis, the agency would typically
wait for the condition of the steel bridge paint to get to
the worst acceptable state before any action is taken.
For example, an agency that considers complete repaint-
ing of its steel highway bridges at condition 4 would
always wait for the paint condition to get to condition 4
before an action to paint is taken. However, including
user cost in the evaluation tends to encourage a shorter
time to a maintenance activity, instead of a longer time.
This is because paint deterioration takes place simulta-
neously with the corrosion of the steel members. If an
agency allows the paint to deteriorate to the ‘‘worst
acceptable state,’’ not only will the bridge require repaint-
ing, but the bridge steel members may have to be
replaced. This more extensive process will time a longer
time to complete, costing road users additional delay in
the meantime.

Data from Fricker and Zayed (1999) indicate that
the initial agency cost for painting a steel bridge varies
from $180 to $220 per ton for paint types 1 (lead-based
paint) and 2 (zinc/vinyl paint) (Table 2.3). The study
also found that M&R agency costs vary from $20 to
$220 per ton. Using data from Michigan Department of
Transportation, the study also found that initial agency

painting cost for a three-coat system paint system
(inorganic/organic zinc epoxy urethane) was $4 and
the rehabilitation agency cost varied from $1.50/ft2

to $4/ft2 (Table 2.4).
In order to compare the agency cost of steel bridge

painting across some departments of transportation,
Zayed et al. (2002) found that the cost varies from $2.50/
ft2 to $16.81/ft2, as presented in Table 2.5. The cost num-
bers observed in the literature may serve a benchmark for
the agency cost numbers in the present study.

The literature is replete with agency cost information
but has almost nothing about the user cost components
for steel bridge painting. In Chapter 4 of this report,
a number of scenario analyses are carried out to include
possible user cost values for steel highway bridge painting.

2.4 Bridge Paint Deterioration Models

Deterioration models for steel bridge coating systems
attempt to describe the path of decline of the coating
condition based on factors that include aging of the
coating system, environment, and the state of main-
tenance practices. In the past, experimental or empirical
data have been used as the basis for modeling steel
bridge paint deterioration. The experimental frame-
work considered painted steel plates in which the
environmental conditions were controlled. Tempera-
ture, precipitation, humidity, and even the loading on
these plates were controlled. The empirical approach uses
data from the field, where the environment is not con-
trolled. The next subsections present past work carried
out using the two approaches for modeling coating
system deterioration.

2.4.1 Experimental Deterioration Models

Kim and Itoh (2005) performed an accelerated
experimental exposure test using steel plates of dimen-
sions 150 mm long, 70 mm wide and 9 mm thick. The
study used Japan Industrial Standards (JIS) SM490A
structural steels, and the plates were treated using a
common surface treatment procedure used for steel
bridge painting in Japan. In order to test for how dif-
ferent paint types would perform, the plates were coated
with five types of painting systems: A-painted system
(applied for a mild environmental condition), C-painted

TABLE 2.3
Estimated Unit Cost of Indiana’s Steel Bridge Paint Rehabilitation (Zayed et al., 2002)

Initial Cost ($/ton) at

Paint Types

Rehabilitation Cost ($/ton) at

Paint Types

Description of

Rehabilitation Process

Every n

Years (n) Alternative Number Paint State 1 2 1 2

Complete repainting 30 1 5 $220 $180 $220 $180

Spot repair 10 2 2 $220 $180 $25 $20

Spot repair 18 3 3 $220 $180 $50 $40

Overcoating 18 4 3 $220 $180 $110 $100

Overcoating 24 5 4 $220 $180 $180 $150

Bridge reconstruction 60
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systems (for severe corrosive condition), and I-painted
system (considered for severe corrosive condition) in
Japan. The I-painting system was subdivided into three
groups (I-1, I-2, and I-3), and the divisions were made
on the basis of the top coats being applied as presented
in Table 2.6.

From the results of the study (Kim & Itoh, 2005)
presented in Figure 2.4, it can be observed that the
rusting area propagates as time increases, regardless of
the type of painted system. Also, using the ordinary
least squares method, regression curves (Figure 2.4)
were developed. The regression curves were of the
form, C=abx, where a and b are constants. However,
the difficulty with this study is that it allowed a to be
fixed at 0.314 and this parameter was not allowed to
vary across observations, and this would give a biased
result if the deterioration model were used to assess any
other coating system.

In the past, other experimental studies (Doherty &
Sykes, 2004; Funke, 1981; Reddy, Doherty, & Sykes,
2004; Reddy & Sykes, 2005) have been carried out on
steel plates to investigate how corrosion propagates and
what can be established to reduce corrosion. The results
from these studies suggested that, at the site of coating
breakdown, the elimination of rust will reverse the
pattern of electrochemical activity. Thus, when steel has
rust deposits at the affected areas, anodic sites are
developed and the rust serves as the cathode reactant.

The Federal Highway Administration (FHWA) car-
ried out a study (Kodumuri & Lee, 2012) to investi-
gate the possibility of discovering steel bridge coating

systems that can ensure a maintenance-free service life
for a century, regardless of the environmental condi-
tions. The study considered eight coatings systems –
three were 3-coat systems comprising organic, inorganic,
and moisture-cured zinc-based primers, four 2-coat
systems with numerous combinations of zinc-based
primers and organic top coats, and a single-coat system
of calcium sulfonate alkyd. These systems were exam-
ined with an accelerated laboratory testing (ALT) and
three outdoor exposure environments: natural weath-
ering (NW), natural weathering with salt spray (NWS)
in McLean, VA, and outdoor testing at the Golden
Gate Bridge (GGB) in San Francisco, CA. The test
panels used for the study were coded ‘‘type II’’ because
‘‘type I’’ identified the test panels used in the previous
FHWA study. The type II panels had dimensions of
18 in by 18 in. In order to simulate the conditions
encountered by bridges in the field, the panels had
welded joints and angle attachments. Table 2.7 pre-
sents a summary of the coating systems, while Figure 2.5
graphically illustrates the rust propagation observed
during the accelerated laboratory testing. The rust cree-
page data from TSZ/LE panels were not measured due
to the development of excessive surface deterioration
after only 1,080 hours of ALT.

The results show that the type I panels did not
develop any rust separation for NW and NWS testing
except for ZnE/LE. When Type II panels in NW and
NWS were exposed for a minimum duration of 6 months,
the ZnE/LE system displayed identifiable rust separation
as presented in Figure 2.6.

TABLE 2.4
Estimated Unit Cost of Michigan’s Steel Bridge Paint Rehabilitation (Zayed et al., 2002)

Description of

Rehabilitation Process

Every n

Years (n) Alternative Number Paint State

Initial Cost ($/ft2)

Three-Coat Paint

System

Rehabilitation Cost ($/ft2)

Three-Coat Paint System

Complete repainting 25 1 5 $4 $4

Spot repair 15 2 3 $4 $1.5

Spot repair 20 3 4 $4 $2.5

Bridge reconstruction 60

TABLE 2.5
Agency Unit Costs and Service Life of Paint Systems (Zayed et al., 2002)

Cost/ft2 and Service Life for Different Paint Systems

Paint System INDOT ODOT MDOT ILDOT KDOT CTDOT FHWA

Service Life

(Years)

Zinc-Vinyl $2.50 x x x x x x 15–25

Three-Coat/Lead $3.96 $4.0–6.0 $9.29 $5 x x x 25–30

Three-Coat/Zinc $2.80 $4.0–6.0 $9.29 $5 x x x 25–30

Metallization $16.81 x x $6.0–9.0a x $12.0–15.0 $14.75 40–60

NOTE: INDOT numbers calculated from data (Georgy & Chang, 1999). ODOT numbers collected from Mr. Herald Schultz and Mr. R. Bauer.

MDOT numbers collected from Mr. Sonny Gduan, Mr. Brion Back, Mr. Craig A. Russell, and Mr. Glenn Bukosky. ILDOT numbers collected

from Mr. Gary Kowalski. CTDOT numbers collected from Mr. Eric Lohrey. FHWA numbers collected from Rep. No. FHWA-RD-96-058.

Service life numbers for cinz-vinyl from Mr. Ted Hopwood; for three-coat system from ILDOT and MDOT; and for metallization from ILDOT

and CTDOT.
aThis number is for new bridges only.
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TABLE 2.6
Coating Systems Used (Kim & Itoh, 2005)

Symbol of Test Specimens Painting Process Treatment and Material Designed Film Thickness (mm)

A-painted steel Surface preparation Power tool, SIS-St3 Class –

1st undercoat Lead anticorrosive paint 35

2nd undercoat Lead anticorrosive paint 35

Intermediate coat Alkyd resin 30

Top coat Alkyd resin 25

C-painted steel Surface preparation Blast, SIS-Sa2 1/2 Class –

1st undercoat Inorganic zinc-rich paint 75

– Mist coat –

2nd undercoat Epoxy resin 60

3rd undercoat Epoxy resin 60

Intermediate coat Polyurethane resin 30

Top coat Polyurethane resin 25

I1-painted steel Surface preparation Brush Off Blast, SIS-Sa1 Class –

Undercoat Organic zinc-rich paint 75

Intermediate coat Polyurethane resin 30

Top coat Polyurethane resin 25

I2-painted steel Surface preparation Brush Off Blast, SIS-Sa1 Class –

Undercoat Organic zinc-rich paint 75

Intermediate coat Silicone acrylic resin coating 30

Top coat Silicone acrylic resin coating 25

I3-painted steel Surface preparation Brush Off Blast, SIS-Sa1 Class –

Undercoat Organic zinc-rich coating 75

Intermediate coat Fluorine resin 30

Top coat Fluorine resin 25

Figure 2.4 Rust propagation (Kim & Itoh, 2005).
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TABLE 2.7
Summary of Coating Systems (Kodumuri & Lee, 2012)

System Number System ID

Coating Type

Primer Intermediate Top

1 Three-coat (control) Inorganic zinc-rich epoxy (IOZ) Epoxy (E) Aliphatic polyurethane (PU)

2 Three-coat (control) Zinc-rich epoxy primer (ZE) E PU

3 Three-coat Moisture-cured urethane zinc primer (MCU) E Fluorourethane (F)

4 Two-coat ZE PU

5 Two-coat Inorganic zinc primer (Zn) Polysiloxane (PS)

6 Two-coat Thermally sprayed zinc primer (TSZ) Linear epoxy (LE)

7 Two-coat Experimental zinc primer (ZnE) LE

8 One-coat High-ratio calcium sulfonate alkyd (HRCSA)

Figure 2.6 Rust creepage growth of ZnE/LE (Kodumuri & Lee, 2012).

Figure 2.5 Rust creepage growth with time during ALT (Kodumuri & Lee, 2012).

8 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/12



The test results made possible these three observations:

N Steel highway bridge maintenance-free corrosion protec-
tion for a century could not be achieved from the selected
coating systems.

N IOZ/E/PU, ZE/E/PU, and HRCSA performed well and
were better than the other coating systems.

N TSZ/LE and ZnE/LE failed prematurely and had a worse
performance than the other coating systems.

The previous section presented and discussed how
evaluations of steel bridge coating systems were carried
out using experimental data. In the next section, evalua-
tions of steel bridge coating systems based on empirical
data are presented and discussed.

2.4.2 Empirical Modeling Data

The empirical modeling of steel bridge coating system
can be broadly classified into two methods: deterministic
and probabilistic. These methods, which are not mutually
exclusive, are discussed below.

Deterministic Methods. These models describe the
relationship between bridge paint condition and possible
deterioration factors. In the past, these models have been
used to predict the condition of the paint on steel high-
way bridges with the assumption of perfect knowledge
of the relationship between the factors and the paint
condition. In a study conducted by Zayed et al. (2002),
a regression analysis was carried out to relate steel bridge
painted condition to the paint age. The age of a steel
bridge when it was painted was the only independent var-
iable found to be statistically significant, while the other
factors, including traffic load, and environmental con-
ditions, were statistically insignificant. The developed
models were clustered into two highway types: interstates
and state (non-interstate) roads. Using a polynomial
functional form, the study developed models for lead-
based paints (paint type 1) and zinc/vinyl-based paints
(paint type 2), as illustrated in Figure 2.7. The models are
indicated in Equations 2.1 to 2.4 as follows:

Paint type 1for interstate roads:

Paint rating~9:06{0:0821 Ageð Þ{0:00178 Age2
� �

ð2:1Þ

Paint type 2 for interstate roads:

Paint rating~9:06{0:201 Ageð Þ{0:0103 Age2
� �

{0:000348 Age3
� �

ð2:2Þ

Paint type 1 for state roads (non-interstate):

Paint rating~9:06{0:007 Ageð Þ{0:00517 Age2
� �

ð2:3Þ

Paint type 2 for state roads (non-interstate):

Paint rating~9:03{0:0753 Ageð Þ{0:00489 Age2
� �

{0:000054 Age3
� �

ð2:4Þ

Probabilistic Methods. The probabilistic models are
stochastic, and may be able to capture the deterioration
of infrastructure in a manner considered to be more
robust than the deterministic method, due to the pro-
babilistic manner of infrastructure deterioration (Qiao
et al., 2016). One of the widely used stochastic methods
in bridge deterioration analysis is the Markovian model,
because it is able to approximate the subsequent con-
ditions using transition probabilities. Transition proba-
bilities describe the probability that a system will move
from one condition state to another in specified duration.
This model is based on a discrete data technique because
deterioration of bridges can be considered as a discrete
phenomenon rather than continuous. One primary limi-
tation of the method is that it ignores the future per-
formance of the steel bridge paint because it does not
capture the time that the steel bridge paint was in the
present condition state. In a study by Zayed et al. (2002),
the Markov model was used to predict the future per-
formance of bridge paint condition. The Markov proba-
bility transition, which was determined using a regression
model, was used to model how steel bridge paint deter-
iorates with time. The study assumed that the condition
of the bridge paint would not change by more than one
state in one year. The adopted probability transition
matrix used was in this form:

P~

p(1) q(1) 0 0 0

0 p(2) q(2) 0 0

0 0 p(3) q(3) 0

0 0 0 p(4) q(4)

0 0 0 0 1

2
6666664

3
7777775

where p(j)5probability of steel bridge paint continuing in
state j during one inspection cycle; and q(j) = 1 – p(j) is
the probability of the bridge paint dropping to the next
lower state (j + 1) during one inspection cycle. A compa-
rison of the results from both the probabilistic methods
(e.g., Markovian model) and the deterministic methods
(e.g., regression model) is presented in Figure 2.8. It can
be observed that the trend of deterioration from these
two methods was not significantly different.

2.5 Treatment Effectiveness

In order to determine the most cost effective strategic
schedule for steel bridge painting treatments across the
life cycle, the cost and effectiveness of each treatment
have to be determined. Effectiveness of steel bridge paint-
ing preservation is the reduced rate of painted condition
deterioration due to a preservation action. Effectiveness
can be either short-term or long-term. Short-term treat-
ment effectiveness enables the comparisons of the bene-
fits of alternative preservation interventions for different
attributes, including treatment type (Labi & Sinha, 2003).
However, many highway agencies make their plans,
programs and budgets based on long-term effectiveness,
rather than short-term effectiveness. The three possible
measures of long-term effectiveness include: (a) treatment
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service life (measures the extension in paint life on a steel
highway bridge due to a preservation treatment), (b) rise
in average asset condition in the post-treatment period,
compared to the condition prior to the treatment, and
(c) increase in area under the paint performance curve
due to the preservation treatment. For the present study,
the long-term effectiveness of painted service life will
be established using option (c), which is the rise in area
under the paint performance curve due to the preserva-
tion treatment (Figure 2.9).

The area bounded by the paint performance curve
and the threshold line, at which a treatment action is
taken, are critical in the computation of the effective-
ness and the service life of a particular treatment. Using
the area bounded by the paint performance curve repre-
sents an appropriate approach to quantity the long-term
effectiveness of preservation treatments. One way of com-
puting the area under the performance curve is to use
annual measurements of the performance indicator for

each asset that received the treatment under investiga-
tion, plot a graph of the condition measurements versus
time, determine each asset’s area under the performance
plot, and compute the arithmetic mean of these areas.
An alternative approach is to develop a performance
curve for the treated assets and compute the area bounded
by the curve between treatment time and the threshold.
In both approaches, the area bounded by the curve can be
computed by coordinate geometry. In the present study,
the paint performance function would be determined and
used to compute the effectiveness of a specified treatment
type. The equation governing the effectiveness computa-
tion would be in this form:

PTE~

ðj

i~0

g(x) ð2:5Þ

where PTE5 paint treatment effectiveness; i 5 time
interval; j 5 service life of the paint maintenance

Figure 2.7 Performance curves for steel highway bridge paint systems.
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treatment; and g(x) 5 deterioration model or function
of the paint treatment.

2.6 Cost-Effectiveness

After computing cost and effectiveness values related
to the identified treatments, the next step would be
to determine the best treatment. One way to select the
best treatment would be by comparing the various
cost-effectiveness ratios (Hass, Turay, & Austin, 1991;
Labi & Sinha, 2005). In the present study, the cost-
effectiveness ratio is used to compare various main-
tenance strategies and establish the appropriate treatment
type and strategic schedule of treatment types. The
concept embedded in the cost-effectiveness computa-
tion is analogous to the benefit-cost ratio, which has been
used to compare alternative projects based on econo-
mic efficiency analysis. For a comparison of many treat-
ments, the treatment with the highest cost-effectiveness
ratio can be considered as the most cost-effective

treatment, and ought to be selected. Thus, a treatment
with a higher cost-effectiveness ratio is a better treatment.
A cost-effectiveness ratio greater than unity indicates that
the benefits outweigh the cost associated with the treat-
ment. The cost-effectiveness ratio for a paint treatment
type can be computed using the form:

PTCE~
PTE

EUAC
ð2:6Þ

where PTCE 5 paint maintenance treatment cost-
effective ratio; PTE 5 annualized paint treatment effec-
tiveness; and EUAC 5 equivalent annual cost of paint
treatment.

3. METHODOLOGY

This chapter discusses the methodologies used for
data collection, selection of statistical variables, statis-
tical analysis framework to investigate the factors aff-
ecting steel bridge paint condition and cost. In addition,

Figure 2.8 Paint deterioration curves: regression versus Markov models (Zayed et al., 2002).

Figure 2.9 Determination of long-term effectiveness.
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the chapter presents the development of the effectiveness
and cost-effectiveness methods for steel bridge paint
treatment, and the recommended decision framework for
steel bridge painting.

3.1 Data Collection

Steel bridge paint-related data were available from
Indiana Department of Transportation (INDOT)
and the National Bridge Inventory, Federal Highway
Administration. In order to investigate the possible
measureable factors influencing paint conditions on
steel highway bridges, the items listed in Table 3.1
were collected.

3.1.1 Agency Cost and Bridge Surface Area

Agency cost data came from the contract letting
information website of INDOT. This cost information
is the cost incurred by the agency for the actual painting
of the entire steel bridge surface. The steel bridge sur-
face area painted was also available to the present study
from INDOT. Based on the data on surface area painted
and the agency cost, the unit agency cost for painting
steel highway bridges was calculated.

3.1.2 Expected Service Life

The expected service life of a paint treatment is the
number of years it takes for a painted steel bridge to
deteriorate to the trigger value, at which it was last
painted. The expected service lives were computed from
INDOT’s database. Using the database, the difference
between the date a steel bridge was painted and the next
painting date was computed to estimate the treatment
service life.

3.1.3 Maintenance of Traffic Cost

The cost information associated with maintenance of
traffic facilitated the computation of cost per day for
management of traffic during a painting period. This
variable assisted in the determination of the cost the

agency incurs for maintenance of traffic only during a
steel bridge painting activity.

3.1.4 Percentage of Corrosion

Percent of corrosion on the steel bridge when a
painting treatment is being done was needed to analyze
the corrosion level at which a particular type of paint-
ing treatment would be necessary. However, there was
no empirical data from INDOT regarding the fraction
of corrosion on the steel bridge surface prior to paint-
ing. Therefore, the present study consulted the ASTM
standard (Table 3.2), to determine the extent of rust or
corrosion that would need a type of treatment. For
example, when between 3% and to 10% of a steel bridge
surface is observed to be rusted, then the bridge surface is
considered to have a rust grade of 4. In order to improve
this condition, the area to be painted would be appro-
ximately 40% (Table 3.3) of the total steel bridge surface.
This procedure was included in the decision tree for steel
bridge painting treatment.

3.1.5 Bridge Location and Highway Functional Class

Bridge location and highway functional class data
were available from INDOT and the National Bridge
Inventory website from FHWA. The bridge location was
used to identify the type of bridge that was analyzed and
the corresponding environmental factors associated with
the location. In addition, highway functional class (NHS-
interstate, NHS-non interstate and non-NHS) data were
needed to investigate and identify the appropriate high-
way classes that significantly affect the cost of steel bridge
painting activity.

3.1.6 Steel Bridge Paint Condition Data

Steel bridge paint condition data were available to
the present study from INDOT, specifically from Bill
Dittrich. The data provided the condition of paints on
all steel bridges on the state highway system. The data
were from years 2006 to 2015, except year 2009, which
was missing.

TABLE 3.1
Data Collection

Data Description Remarks Source

Agency cost Quantify cost of surface area painted INDOT

Expected service life Paint life INDOT

Surface area of the structure painted Compute total paint cost for each painting activity INDOT

Maintenance of traffic (MOT) duration,

and cost per day for maintenance of traffic

Estimate cost of maintenance of traffic INDOT

Percent of corrosion Indicate the type of painting activity to be carried out ASTM/SSPC

Bridge location/functional class Located on NHS (NNHS) highway class INDOT/FHWA

Steel bridge paint condition
Indicates the paint condition of the steel bridge,

1 being the worst, and 9 the best
INDOT

Environmental factors Precipitation, temperature NOAA

User cost
Traffic delays, safety cost & loss productivity

due to painting activity
Literature
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3.1.7 Environmental Data

Environmental data were obtained from the Natio-
nal Oceanic and Atmospheric Administration (NOAA).
These data were specific to individual counties in the
state of Indiana. The data collected include average
annual temperature, average annual precipitation,
number of freeze-thaw cycles, and freeze index.

3.1.8 User Cost

Due to the absence of specific steel bridge painting
activity data, user cost data related to steel bridge
painting were obtained through adoption of user cost
models developed in the literature. In the present study
in relation to steel bridge painting, relevant user cost
on traffic delays, and loss of productivity due to steel
bridge painting activity were considered.

3.2 Deterioration Models for Painted Steel Bridges

3.2.1 Statistical Variables

In order to model the deterioration of paint on steel
bridges, a number of variables were considered initially.
These variables include paint age, paint condition rat-
ing, district location of steel bridge, highway functional
class (NHS/Non-NHS), average annual daily traffic,
average annual daily truck traffic, type of paint (lead-
based or zinc-based), average annual temperature in a
county, average annual precipitation in a county, wet
days in a county, warm days, and number of freeze
thaw cycles. Paint condition rating was the dependent
variable, and the remaining variables were considered
as the independent variables. Discrete paint condition
ratings range from 0 (worst condition) to 10 (best
condition). Many of the variables were observed to

TABLE 3.2
Scale and Description of Rust Ratings (ASTM, 2012)

Visual Examples

Rust Grade Percentage of Surface Rusted Spot(s) General (G) Pinpoint (P)

10 #0.01% None

9 .0.01% and up to 0.03% 9–S 9–G 9–P

8 .0.03% and up to 0.1% 8–S 8–G 8–P

7 .0.1% and up to 0.3% 7–S 7–G 7–P

6 .0.3% and up to 1.0% 6–S 6–G 6–P

5 .1.0% and up to 3.0% 5–S 5–G 5–P

4 .3.0% and up to 10.0% 4–S 4–G 4–P

3 .10.0% and up to 16.0% 3–S 3–G 3–P

2 .16.0% and up to 33.0% 2–S 2–G 2–P

1 .33.0% and up to 50.0% 1–S 1–G 1–P

0 .50% None

Rust Distribution Types:

S: Spot Rusting—Spot rusting occurs when the bulk of the rusting is concentrated in a few localized areas of the painted surface. The visual

examples depicting this type of rusting are labeled 9–S through 1–S.

G: General Rusting—General rusting occurs when various size rust spots are randomly distributed across the surface. The visual examples

depicting this type of rusting are labeled 9–G through 1–G.

P: Pinpoint Rusting—Pinpoint rusting occurs when the rust is distributed across the surface as very small individual specks of rust. The visual

examples depicting this type of rusting are labeled 9–P through 1–P.

H: Hybrid Rusting—An actual rusting surface may be a hybrid of the types of rust distribution depicted in the visual examples. In this case,

report the total percentage of rust to classify the surface (9–H through 1–H).

TABLE 3.3
ASTM Corrosion Performance Rating (SSPC, 1993)

Corrosion Rating Assessment Description Areas to be Repainted (%)

10 No rust or ,0.01% rust 0

9 ,0.03% rust 0

8 Few isolated spots, ,0.1% rust 0

7 ,0.3% rust 0

6 Extensive rust spots, ,1% rust 8

5 ,3% rust 18

4 ,10% rust 40

3 Approximately 1/6 of surface rusted 60

2 Approximately 1/3 of surface rusted 100

1 Approximately 1/2 of surface rusted 100

0 Approximately 100% of surface rusted 100
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insignificantly influence paint conditions, however only
three independent variables came out to be statistically
significant at the 5% significance level. Thus, these
variables (steel bridge painted age, NHS/Non-NHS,
and average annual temperature in a county) were
used in the final model.

3.2.2 Statistical Analysis

In the past, a number of statistical techniques were
used to model the deterioration of steel bridge paint
condition ratings, as discussed in Chapter 2. The two
main techniques employed for such analysis were regres-
sion and the stochastic Markov decision process.
Although each technique has its merits and demerits,
the regression approach was observed in the present
study to capture the expected deterioration pattern of
steel bridge paint conditions better than the stochastic
Markov decision process. Also, a comparison analysis
of these two techniques conducted on steel bridge paint
conditions found the results from the regression
approach to be better (Zayed et al., 2002). In addition,
INDOT’s current bridge management system uses a
regression approach. Finally, the present study obser-
ved, using nine years of steel bridge paint condition
rating data, little to no variation in paint condition
rating across the selected bridges. Thus, capturing the
deterioration of paint condition using a stochastic
approach was not feasible. Nonetheless, the study con-
ducted a preliminary analysis using some stochastic
techniques, including binary probit and random-effects
binary probit models, and found the results to be coun-
terintuitive. Therefore, the present study selected and
used the regression approach to analyze the deteriora-
tion of steel bridge paint conditions.

The statistical approach used was in the form of a log
linear model shown in Equation 3.1.

Y~czbiLN(Xi)zei, ð3:1Þ

where Y 5 dependent variable; c5constant term;
Xi vector of independent variables; bi5estimated para-
meters; and ei5disturbance term.

From the preliminary analysis, the deterioration
pattern for painted steel bridges on NHS highways
was found to be different for painted steel bridges on
Non-NHS highways. In order to test whether to create

only one model that captures both highway functional
classes or to separate the models into NHS and non-
NHS, a log likelihood ratio test was conducted using
the test statistic:

X 2~{2 LL bLCð Þ{LL bHCð Þ½ �, ð3:2Þ

where LL(bLC) is the log likelihood at convergence value
for the model with the lower convergence value, and
LL(bHC) is the log likelihood at convergence value for the
model with the higher convergence value (Greene, 2012;
Washington, Karlaftis, & Mannering, 2011). The statistic
X2 is x2 distributed and the difference in the numbers
of estimated parameters between the models is the
degrees of freedom. Using the test statistics, two separate
models were recommended. The present study developed
separate model for NHS painted steel highway bridges
and non-NHS bridges, as shown in Table 3.4.

In Table 3.4, PCR 5 paint condition rating of steel
highway bridge; PAGE 5 painted age, that is, the years
the paint coating system has been on the bridge;
TEMP5 the average annual temperature of the county
in which the bridge is located; and c,b1,b25 estimated
parameters.

As shown in Table 3.4, an increase in the painted age
of the steel bridge decreases the painted condition rating.
This result is intuitive. The trend was the same for
bridges on the NHS and non-NHS.

The county’s average annual temperature values sig-
nificantly affect the rate of change in condition rating of
the paint system on a steel highway bridge. All other
things being equal, a bridge located in a county with
higher average annual temperature value would dete-
riorate more slowly than the same bridge in a county
with a lower average annual temperature value. The
sign of the estimated parameters was the same for NHS
highways and non-NHS highways. In the present study,
average annual temperatures range from 47 uF to 57 uF.

The factors bridges over water and bridges over roads
were considered in the initial analysis, but they were not
found to be statistically significant.

3.2.3 Painting Effectiveness Computation

The effectiveness of a paint treatment was com-
puted using the concept of area under the deterioration
curve, as discussed in Chapter 2. For the present study,

TABLE 3.4
Steel Bridge Paint Condition Deterioration Models

Description Model Coefficient t-statistics Adjusted R2

NHS PCR~czb1LN(PAGE)zb2LN(TEMP) c –23.195 –8.44 0.406

b1 –1.216 –23.38

b2 7.852 11.83

Non-NHS c –25.108 –6.24 0.411

b1 –1.082 –16.39

b2 8.224 8.42
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the effectiveness of a paint treatment was carried out
using calculus as indicated in Equation 2.5.

3.3 Cost Models for Painted Steel Bridges

3.3.1 Agency Cost Variables and Model

In order to develop a cost model to capture the rela-
tionship between the cost of painting a steel highway
bridge, a number of variables were considered. The var-
iables included painted area of the steel bridge, highway
functional class (NHS/Non-NHS), the deck area, length
and width of bridge, average annual daily traffic, and
average annual truck traffic. All the independent var-
iables were tested at different statistical significance
levels for possible relationship with the dependent
variable, but only paint age and highway functional
class (NHS/Non-NHS) were found to be statistically
significant at the 5% significance level and were inclu-
ded in the final model. The dependent variables con-
sidered initially included agency paint cost and agency
paint unit cost. Both variables were evaluated against
the independent variables, however, agency paint unit
cost was observed to produce the better results. It cap-
tures the economies of scale in relation to the size of the
different painting projects. The final agency unit paint
cost model is presented in Table 3.5.

In Table 3.5, PUC 5 unit cost to paint steel highway
bridges; PA 5 painted area, that is, the bridge surface
area painted; NHS 5 1 if the steel bridge is located on
an NHS (national highway system) road, otherwise
zero; and c,b1,b25 estimated parameters.

The bridge surface area painted significantly influ-
ences the cost of painting a bridge. An increase in the
surface area decreases the agency unit cost to paint a
steel bridge. This result indicates economies of scale,
which would not be adequately captured if the total
agency cost was used as a dependent variable.

The highway functional class (NHS/Non-NHS) sta-
tistically affects the agency unit cost for painting steel
bridges. An increase in the number of steel bridges on
the NHS would decrease the unit agency cost to paint
these bridges.

Life-cycle painting cost analysis was carried out to
estimate the total agency cost over the life cycle of a
painted steel bridge. In order to compute the life-cycle
cost of painted steel bridges, the various treatment types
available for painting a steel highway bridge should be
evaluated. Conceptually, the life-cycle agency cost anal-
ysis of painting steel bridges should be carried out as

illustrated in Figure 3.1. The figure indicates that after
new painting is applied for a new bridge, spot repair/
paint is carried out followed by an overcoat and then a
spot repair/paint before the bridge is replaced.

However, in the present study, the costs of two other
treatment types (spot paint and overcoat) were not
available, because INDOT does not use these treatment
types on steel bridges. INDOT only carries out new
painting, and waits for the coating system to deteriorate
to a predefined condition threshold of about 5, before a
complete recoating is carried out. Thus, the agency life-
cycle paint cost for an existing steel bridge considers
new painting and complete recoating, as illustrated in
Figure 3.2. In the present study, the life-cycle agency
cost for steel bridge painting was carried out using the
profile in Figure 3.2.

3.3.2 User Costs

Economic efficiency analysis in the present study
would require the inclusion of user-related costs caused
by steel highway bridge painting. However, the chal-
lenge is the determination of the relative weights for
user and agency costs. Although some studies counted
user costs on an equal basis with agency costs, there
is a possibility of a trade-off between agency expenses
and user cost (FHWA, 2002). Accordingly, some studies

TABLE 3.5
Agency Unit Paint Cost Model

Model Coefficient t-statistics Adjusted R2

PUC~czb1LN(PA)zb2(NHS) c 24.525 5.60 0.287

b1 –1.621 –3.72

b2 –1.273 –2.17

Figure 3.1 Conceptual steel bridge painting profile.

Figure 3.2 State of practice: steel bridge painting profile.
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have argued that only a percentage of user costs ought to
be added to agency costs in project evaluation and in the
decision-making process. There seems to be no consensus
on the issue. In the present study, the equal weight option
is one of several options considered in the next chapter.

In order to estimate the user cost related to traffic
delay due to a steel bridge painting activity, the pre-
sent study developed a model to estimate the expected
duration, D, of a painting project. The model is, D =
65.952LN(X) + 154.2, where X is the contract cost in
millions. Based on the estimated work zone duration,
the work zone user travel delay cost can be estimated,
based on the total traffic volume, surface bridge area
painted, the value of time and the percentage of vehicles
delayed during the painting period.

For the present study, a case study was created in
which average daily traffic volume was 16,911 vehicles
per day over a typical steel highway bridge. It was
assumed that 10% of the traffic would be delayed, value
of time was $7.25 per hour, and bridge surface area
was 22,376 ft2, resulting in a user cost of $14.46/ft2 (in
2015$). This value will be considered in the next chapter
when evaluating the total cost associated with steel
bridge painting.

4. DECISION TREE FOR STEEL BRIDGE
PAINTING

This chapter computes and evaluates the cost-
effectiveness values for possible trigger values for steel
highway bridge painting. The cost and effectiveness
computations derived in the previous chapter facilitated
the cost-effectiveness computations in this chapter. In
addition, a decision tree for when to paint a steel high-
way bridge is proposed and discussed, to help INDOT
evaluate possible changes to its current practice.

4.1 Cost-Effectiveness of Steel Bridge Paint Treatments

A paint treatment type is considered cost effective
when the benefits derived from the treatment outweigh
the costs associated with the treatment. As discussed in
previous chapters, the costs associated with steel bridge
painting for the present study may include agency costs
and user costs. However, it is difficult to determine
the proper relative weights for agency and user costs.
In some past studies, the focus of evaluating the cost-
effectiveness of a treatment was limited to agency cost.
In other studies, user costs were considered using sen-
sitivity analysis, where agency cost and user cost were
given varied weights. In the present study, sensitivity
analysis was used to assess the relative weights of agency
and user cost values associated with steel bridge painting.

4.1.1 State of Practice: Life-Cycle Agency Cost Analysis

To facilitate the computation of the cost-effectiveness
values for different treatments, a life-cycle cost anal-
ysis for each strategy needs to be established. For the
present study, INDOT’s current strategy of completely

recoating a steel bridge approximately every 25 years
during the bridge’s life was evaluated, to establish its
cost-effectiveness. For the purpose of the present study,
the life of a steel highway bridge was considered to range
from 65 years to 85 years, with an average of 75 years,
based on previous studies in Indiana. Thus, using
INDOT’s current practice of recoating every 25 years,
it means that a steel bridge with a 75-year life will receive
complete recoating two times before the bridge is
replaced, as presented in Figure 4.1. If this practice is
expected to continue, costs can be compared using
equivalent uniform annual cost.

Based on the frequency of complete recoating in the
life of a steel bridge (Figure 4.1), and using a discount
rate of 4% (BEA, 2016), the present worth cost is
computed as:

PWCP~NPz
CR1

1zið Þ25
z

CR2

1zið Þ50
ð4:1Þ

where PWCP5 present worth cost from the current
practice in Indiana, NP = cost of new painting of a steel
bridge; i 5 average annual interest rate; and CRi5 cost
of complete recoating in year i.

On the basis of INDOT’s historical steel bridge
painting data, the average unit cost for painting new
steel bridges was $7.79 (in 2015$) per square foot area
painted, with a standard deviation of $0.39. Also, the
average cost for complete recoating steel bridges was
$6.29 (in 2015$), with a standard deviation of $0.38.
Using this information, and considering agency cost
only, the present worth cost of the current practice
for painting steel highway bridges in Indiana can be
computed as:

PWCP~7:79z
6:29

1z0:04ð Þ25
z

6:29

1z0:04ð Þ50
~$11:03=ft2

The present worth agency cost can be annualized as:

EUACCP~11:03
0:04| 1z0:04ð Þ75

1z0:04ð Þ75
{1

 !
~$0:47=ft2

The user cost was estimated to be $14.46/ft2 in the
last paragraph of Chapter 3. If this user cost is included

Figure 4.1 Life-cycle cost analysis: Indiana’s steel bridge
painting practice.
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in the present worth of the user cost associated with
bridge painting, then the present worth is computed as:

PWUC~14:46z
14:46

1z0:04ð Þ25
z

14:46

1z0:04ð Þ50
~$21:92=ft2

The present worth user cost can be annualized as:

EUACUC~21:92z
0:04| 1z0:04ð Þ75

1z0:04ð Þ75
{1

 !
~$0:93=ft2

After the cost numbers are computed, the effec-
tiveness numbers can be computed to establish the
cost-effectiveness of the current practice. Using the deterio-
ration model developed and discussed in Chapter 3 of this
report, the effectiveness value was computed as:

Eff ~

ðTL

0

czb1LN PAGEð Þð

zâ2LN TEMPð ÞÞdpage ð4:2Þ

The variables are the same as explained in Chapter 3.
The limits are from zero to TL, where TL is the treat-
ment life or service life for the treatment. The treatment

life for a painting or coating system varies from 12 to
50 years, with an average of 25 years, based on the model
output at condition 4. Using this information, the com-
plete recoating treatment effectiveness is computed as:

Eff ~

ð25

0

{23:195{1:216LN(PAGE)ð

z7:852LN(52)ÞdPAGE ð4:3Þ

Solving Equation 4.3 yields a total effectiveness value
of 128.3 condition-years gained, from Year zero to
Year 25. In order to establish the annual effectiveness
value, 128.3 was divided by the service life of the
treatment (25 years). The annual effectiveness value is

128:3
25

� �
~5:132, resulting in an agency cost-effectiveness

value of 5:132
0:47

� �
~10:919. If only user cost is considered,

the cost-effectiveness will be 5:132
0:93

� �
~5:518. Combining

agency and user costs into a total cost analysis will result

in a cost-effectiveness value of 5:132
0:5|0:47z0:5|0:93

� �
~7:331.

Thus, the cost-effectiveness of the current painting prac-
tice in Indiana is 7.331. This value was computed assum-
ing the relative weights of agency cost to user cost are
one-to-one (that is, 50% of the weight is assigned to
agency cost and 50% assigned to user cost). How-
ever, if the weight ratio changes, the cost-effectiveness
value will be different. Sensitivity analyses with four
relative weights of agency cost to user cost are pre-
sented in Table 4.1. A graphical illustration, with varying
relative weights of agency cost to user cost ratios, is
presented in Figure 4.2. From the table and the figure,
it can be observed that, if the weight of agency cost is 0.8
and the weight of user cost is 0.2, the cost-effectiveness
will be 9.132.

TABLE 4.1
Effect of User Cost of Steel Painting Cost-Effectiveness

Agency Cost Weight User Cost Weight Cost-Effectiveness

0 1 5.518

0.5 0.5 7.331

0.80 0.2 9.132

0.84 0.16 9.441

1 0 10.919

Figure 4.2 Painting cost-effectiveness versus ratio of weight of agency cost to weight of user cost.
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In order to evaluate the potential of either applying
complete recoating at conditions 3 or 5, the same com-
putational procedure discussed for condition trigger
value 4 was applied, with some assumptions. For trig-
ger values 3 and 5, 15% and 8% of the traffic volume
was assumed to be delayed compared 10% for trigger
value 4. This assumption was included because, from
practice, a lower paint condition would require a longer
time for painting compared to a relatively better paint
condition. Thus, the present study assumed that con-
dition trigger value 3 would require more painting
duration compared to condition trigger value 5. The
cost-effectiveness results are presented in Table 4.2. The
results in Table 4.2 assume that the weight for user cost
is the same as the weight for agency cost. In the table,
it can be observed that paint condition trigger 4 is the
most cost-effective for the current practice.

4.2 Proposed Painting Treatments Strategy

The present study considered alternatives to current
INDOT’s treatment strategy to facilitate longevity of
steel highway bridges. An alternative strategy was
derived from the guidelines in ASTM and SSPC
standards as discussed earlier in Chapter 2.

In order to develop this strategy, three treatment
types were assumed to be possible in the life of a steel
highway bridge. These treatment types are new paint-
ing, spot repair or painting, and overcoat. A spot repair
takes place when the rusted areas on a steel highway
bridge are removed from the surface, and a new paint is
applied to those specific areas or surfaces. Overcoating
is carried out on a steel highway bridge when all defec-
tive areas are removed and the entire steel bridge
surface receives a new paint. This new paint ought to be
compatible with the existing paint system.

To evaluate possible strategies, these treatment types
(new painting, spot repair/painting, and overcoating)
will be considered in the life-cycle analysis of a steel
highway bridge, as illustrated in Figure 4.3. In the
figure, spot repair or painting is considered in the
20th year, overcoating in the 40th year, and spot repair in
the 60th year. The bridge is replaced in the 75th year.

In order to evaluate this strategy, and compare the
results with INDOT’s current practice, cost values are
needed. The costs associated with spot repair/painting
and overcoating from previous studies are presented in
Table 4.3. In the table, for example, new steel bridge

average painting cost was $7.79 (in 2015$) per square
foot area painted.

Using the treatment types in Figure 4.3, with a 4%

discount rate and cost values in Table 4.3, the present
worth agency cost based on the proposed strategy is:

PWPPSAC~7:79z
3:69

1z0:04ð Þ20
z

4:43

1z0:04ð Þ40

z
3:69

1z0:04ð Þ60
~$10:75=ft2

The present worth of agency cost can be annua-
lized as:

EUACPPSAC~10:75
0:04| 1z0:04ð Þ75

1z0:04ð Þ75
{1

 !
~$0:45=ft2

To compute user cost for the proposed painting
strategy, the present study assumes that spot repair
takes a shorter painting time than complete recoating,
because the paint condition requiring spot repair is
in a better condition; thus, spot repair is expected to
have insignificant bridge user delay (i.e., assumed as no
bridge user delay) compared to complete recoating. For
overcoat, it was assumed that the travel time delay caused
to bridge users would be about 50% that of complete
recoating, based on past experiences from other states.
The present worth user cost associated with bridge
painting for the proposed painting strategy is:

PWPPSUC~14:46
0:5|14:46

1z0:04ð Þ40

 !
~$15:97=ft2

TABLE 4.2
A Comparison of Paint Condition Trigger Values for Current Practice

Paint Condition

Trigger

Annualized

Effectiveness

Traffic Volume

delayed (%) User Cost ($/ft2) Agency Cost ($/ft2) Total Cost ($/ft2) Cost-Effectiveness

3 4.306 15 1.03 0.36 1.39 6.196*

4 5.132 10 0.93 0.47 1.40 7.331

5 6.108 8 1.25 0.74 1.99 6.139**

*Cost-effectiveness value for trigger value 3~ 4:306
0:5|1:03z0:5|0:36

� �
~6:196

**Cost-effectiveness value for trigger value 5~ 6:108
0:5|1:25z0:5|0:74

� �
~6:139

Figure 4.3 Proposed steel bridge painting activity profile.
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The present worth of user cost is annualized as:

EUACPPSUC?~15:97
0:04| 1z0:04ð Þ75

1z0:04ð Þ75
{1

 !
~$0:67=ft2

Based on the computations presented above, the
total annualized cost (agency and user) for the pro-
posed painting strategy is $0.45 + $0.67 = $1.12/ft2,
which is lower than $0.47 + $0.93 = $1.40/ft2 for the
current practice. Based on only the cost components,
the proposed strategy in Figure 4.3 will yield the lower
annualized cost.

The effectiveness of each treatment type can be
developed based on historical data. However, in the
absence of these data, the paint deterioration models
developed and presented in Chapter 3 were used to
compute the effectiveness. This approach assumes that
paint deterioration on steel highway bridges is similar,
regardless of the treatment type. This assumption may
not be accurate, because the use of a complete recoating
deterioration model as a surrogate for spot repair and
overcoating may not reflect the actual pattern of deter-
ioration. However, in the absence of any deterioration
model from spot repair and overcoating treatments,

the present study used the models derived from com-
plete recoating to estimate the effectiveness of both spot
repair and overcoating. The effectiveness values for
using the proposed strategy are presented in Table 4.4.

The cost-effectiveness value of the proposed stra-
tegy is 9.805, and this value is higher than the cost-
effectiveness value of the current practice (7.331, see
Tables 4.1 and 4.2). Based on the results, it would be
appropriate for INDOT to either continue applying
complete recoating at trigger value 4 (see Table 4.2), or
include spot repair and overcoating in the management
of steel highway bridges. The latter strategy is consi-
dered a better option than the former based on the cost-
effectiveness results, and the next section discusses how
INDOT can incorporate the latter strategy into the
proposed decision tree for painting steel highway bridges.

4.2.1 Painting Decision Tree

In order to consider spot repair and overcoating in
the decision-making process of steel bridge painting,
a steel painting decision tree is proposed in Figure 4.4.
The tree is based on the results computed earlier
and the guidelines from the ASTM/SSPC (Table 4.5).

TABLE 4.3
Cost per Paint Treatment Type

Description Cost (2015$/ft2) Source/Remarks

Steel bridge painting when bridge is

newly constructed

7.79 INDOT

Spot repair/painting 3.69 Derived from Zayed et al., 2002.

Overcoating 4.43 Derived from Zayed et al., 2002. Overcoating coat is

about 1.2 times the coat of spot painting

TABLE 4.4
Cost-Effectiveness of Proposed Painting Strategy

Annualized Effectiveness User Cost ($/ft2) Agency Cost ($/ft2) Total Cost ($/ft2) Cost-Effectiveness

5.491 0.67 0.45 1.12 9.805

TABLE 4.5
Condition Triggers for Steel Bridge Painting (derived from ASTM, 2009)

Condition

State

Condition Rating/

Trigger Description

Areas to Be

Repainted (%) Surface Status

1 10 No rust or ,0.01% rust 0 Almost no corrosion

9 ,0.03% rust 0 Almost no corrosion

2 8 Few isolated spots, ,0.1% rust 0 Almost no corrosion

7 ,0.3% rust 0 Slight corrosion

3 6 Extensive rust spots, ,1% rust 8 Slight corrosion

5 ,3% rust 18 Obvious corrosion

4 4 ,10% rust 40 Entirely corroded

3 Approximately 1/6 of surface rusted 60 Entirely corroded

5 2 Approximately 1/3 of surface rusted 100 Entirely corroded

1 Approximately 1/2 of surface rusted 100 Entirely corroded

0 Approximately 100% of surface rusted 100 Entirely corroded
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The decision to select a specific painting treatment
type for a painting distress can be determined from
Figure 4.4. If a steel bridge has condition rating 2, 1 or
0 (which is the same as condition state 5 in Table 4.5),
either it has extensive spots of corrosion on the surface
or the surface is entirely corroded. The decision can
either be spot repair, if the corrosion is located at
varied spots, or complete recoating, if the entire surface
is corroded. The decision tree would serve as a broad
framework to guide INDOT in the determination as to
when to apply a particular paint treatment type. If the
steel bridge has condition rating 10 or 9 (corresponding
to condition state 1) or condition rating 8 or 7 (corre-
sponding to condition state 2), that bridge does not
require any treatment type, and it is indicated in
Figure 4.4 as ‘‘do nothing.’’

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The present study was carried out to establish a cost-
effective way of painting steel highway bridges. Using
data collected from INDOT and other agencies, deter-
ioration models were developed for painted steel high-
way bridges on NHS and NNHS routes. The models
were used to compute the effectiveness expected from
the current INDOT practice for painting steel highway
bridges.

In addition, an agency painting cost model was
developed based on cost-related data from INDOT.
In order to include user-related costs, scenario analyses
were conducted based on varying hypothetical relative
weights of agency cost to user cost.

After evaluating INDOT’s current practice, a
painting decision tree was developed. The tree can
serve as a framework that would enable INDOT to
consider other maintenance treatment types, namely
spot repair/painting and overcoating. Based on the
results, it would be appropriate for INDOT to
either continue applying complete recoating at trig-
ger value 4, or include spot repair and overcoating in
the management of steel highway bridges based on the
proposed painting strategy. The proposed decision
framework would allow INDOT to be more cost-
effective in deciding when and how to paint a steel
highway bridge.

5.2 Recommendation and Future Research

Based on the results from the present study, the
adoption of the developed decision tree would facilitate
and enable INDOT to be more cost-effective in relation
to steel bridge painting. Due to data unavailability on
spot repair and overcoat treatment types, the present
study made some assumptions about treatment costs
and subsequent paint performance. If INDOT begins to
use spot repair and overcoating, cost and performance
data should be collected to permit a check on the cost-
effectiveness of such treatments.

REFERENCES

ASTM. (2009). Standard guide for assessing the condition of
aged coating on steel surfaces. West Conshohocken, PA:
ASTM International. https://www.astm.org/Standards/
D5065.htm

ASTM. (2012). Standard practice for evaluating degree of
rusting on painted steel surfaces (D610-08). In Annual book
of ASTM standards (Vol. 06.01ASTM). West Conshohocken,
PA: American Society for Testing and Materials.

Dadson, D. K. (2001). Impact of environmental classification
on steel girder bridge elements using bridge inspection data
(Doctoral dissertation). Virginia Polytechnic Institute and
State University, Blacksburg, VA.

Doherty, M., & Sykes, J. M. (2004). Micro-cells beneath
organic lacquers: A study using scanning Kelvin probe
and scanning acoustic microscopy. Corrosion Science, 46(5),
1265–1289. https://doi.org/10.1016/j.corsci.2003.09.016

FHWA. (2002). Highway economic requirements system
(Technical Report). Washington, DC: Federal Highway
Administration, U.S. Department of Transportation.

Fricker, J., & Zayed, T. (1999). Steel bridge protection policy:
Volume IV of V—Life cycle cost analysis and maintenance
plan (Joint Transportation Research Program Publication
No. FHWA/IN/JTRP-98/21). West Lafayette, IN: Purdue
University. https://doi.org/10.5703/1288284313320

Funke, W. (1981). Blistering of paint films and filiform
corrosion. Progress in Organic Coatings, 9(1), 29–46.

Greene, W. H. (2012). Econometric analysis (7th ed.). Upper
Saddle, NY: Prentice-Hall.

Hass, R., Turay, S., & Austin, H. (1991). Pavement rehabili-
tation life-cycle economic analysis model (Project No. 21180).
Toronto, ON, Canada: Ministry of Transportation of Ontario.

Kim, I.-T., & Itoh, Y. (2005). Corrosion-degradation pre-
diction of steel bridge paintings. In Proceedings of the 8th
Korea-Japan joint seminar on steel bridges. Nagoya, Japan.

Kline, E. S., & Corbett, W. D. (1992). Beneficial procrastina-
tion-delaying lead paint removal projects by upgrading the
coating system. Journal of Protective Coatings & Linings,
9(3), 48–56.

Kodumuri, P., & Lee, S. K. (2012). Federal Highway Admini-
stration 100-year coating study (Publication No. FHWA-
HRT-12-044). McLean, VA: Federal Highway Administration.
Retrieved from https://www.fhwa.dot.gov/publications/
research/infrastructure/structures/bridge/12044/12044.pdf

Labi, S., & Sinha, K. C. (2003). Measures of short-term
effectiveness of highway pavement maintenance. Journal of
Transportation Engineering, 129(6), 673–683. https://doi.org/
10.1061/(ASCE)0733-947X(2003)129:6(673)

Labi, S., & Sinha, K. C. (2005). Life-cycle evaluation of flexi-
ble pavement preventive maintenance. Journal of Transpor-
tation Engineering, 131(10), 744–751. https://doi.org/10.1061/
(ASCE)0733-947X(2005)131:10(744)

Qiao, Y., Moomen, M., Zhang, Z., Agbelie, B., Labi, S.,
& Sinha, K. C. (2016). Modeling deterioration of bridge
components with binary probit techniques with random
effects. Transportation Research Record: Journal of the
Transportation Research Board, (2550), 96-105.

Reddy, B., Doherty, M. J., & Sykes, J. M. (2004). Breakdown
of organic coatings in corrosive environments examined by
scanning kelvin probe and scanning acoustic microscopy.
Electrochimica Acta, 49(17), 2965–2972. https://doi.org/
10.1016/j.electacta.2004.01.055

Reddy, B., & Sykes, J. M. (2005). Degradation of organic
coatings in a corrosive environment: A study by scanning
Kelvin probe and scanning acoustic microscope. Progress

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/12 21

https://www.astm.org/Standards/D5065.htm
https://www.astm.org/Standards/D5065.htm
https://doi.org/10.1016/j.corsci.2003.09.016
https://doi.org/10.5703/1288284313320
https://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/12044/12044.pdf
https://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/12044/12044.pdf
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(673)
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(673)
https://doi.org/10.1061/(ASCE)0733-947X(2005)131:10(744)
https://doi.org/10.1061/(ASCE)0733-947X(2005)131:10(744)
https://doi.org/10.1016/j.electacta.2004.01.055
https://doi.org/10.1016/j.electacta.2004.01.055


in Organic Coatings, 52(4), 280–287. https://doi.org/10.1016/

j.porgcoat.2004.04.004

SSPC. (1993). Steel structures painting manual: Vol. 1—Good

painting practice. Pittsburgh, PA: Society for Protective

Coatings.

Tam, C. K., & Stiemer, S. F. (1996). Development of bridge

corrosion cost model for coating maintenance. Journal of

Performance of Constructed Facilities, 10(2), 47–56. https://

doi.org/10.1061/(ASCE)0887-3828(1996)10:2(47)

Washington, S. P., Karlaftis, M. G., & Mannering, F. L.

(2011). Statistical and econometric methods for transporta-

tion data analysis (2nd ed.). Boca Raton, FL: Chapman

& Hall.

Zayed, T. M., Chang, L. M., & Fricker, J. D. (2002). Life-cycle

cost based maintenance plan for steel bridge protection sys-

tems. Journal of Performance of Constructed Facilities, 16(2),

55–62. https://doi.org/10.1061/(ASCE)0887-3828(2002)

16:2(55)

22 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/12

https://doi.org/10.1016/j.porgcoat.2004.04.004
https://doi.org/10.1016/j.porgcoat.2004.04.004
https://doi.org/10.1061/(ASCE)0887-3828(1996)10:2(47)
https://doi.org/10.1061/(ASCE)0887-3828(1996)10:2(47)
https://doi.org/10.1061/(ASCE)0887-3828(2002)16:2(55)
https://doi.org/10.1061/(ASCE)0887-3828(2002)16:2(55)


APPENDIX: EVALUATING DEGREE OF RUSTING
ON PAINTED STEEL SURFACE (ASTM, 2012)

Rust Distribution

Spot Rusting

Spot rusting occurs when the bulk of the rusting is con-
centrated in a few localized areas of the painted surface.
The reference photographs in Figures A.1, A.2, and A.3
depicting this type of rusting are labeled 9-S through 1-S.

General Rusting

General rusting occurs when various size rust spots
are randomly distributed across the surface. The reference
photographs in Figures A.1, A.2, and A.3 depicting this
type of rusting are labeled 9-G through 1-G.

Pinpoint Rusting

Pinpoint rusting occurs when the rust is distributed
across the surface as very small individual specks of rust.
The reference photographs in Figures A.1, A.2, and A.3
depicting this type of rusting are labeled 9-P through 1-P.

Other Rusting

An actual rusting surface may be a hybrid combina-
tion of the types of rust distribution depicted in the
reference photographs. In this case, combinations of the
photographs and rust grades may be needed to classify
the surface.

Procedures

Select Area

Select the area which is to be evaluated for degree of
rusting. This area may be as small as a test panel or as
large as the hull of a ship. For complex structures, each
member may be evaluated as a whole, or different sec-
tions may be evaluated separately (e.g., top of flange,
web of a beam, or edges).

Determine Rust Distribution

Determine the rust distribution (spot, general, or
pinpoint) that most closely matches the selected area.
Compare the selected area with the corresponding color
photograph or black and white image. Determine the
percentage of rust on the surface by visual comparison
with the reference photographs, by electronic scanning
techniques, or other methods agreed upon by the con-
tracting parties.

Determine Rust Grade

The rust grade is determined by the percentage of
visible rust on the surface as defined in Figures A.1,
A.2, and A.3. If rust buildup is evident under the
coating, as in a rust blister or as rust undercutting,
then that rusted area shall be included in the deter-
mination of the rust grade.

N A rust blister is defined as a spot on a painted surface

where the coating is intact but raised from the surface by

the expansion of rust. The rust is not visible, but lies

beneath the coating. A rust blister is not the same as a

fluid-filled blister, which is typically caused by osmotic

pressure or solvent entrapment. The volume of rust (if

present) in a fluid-filled blister is a small percentage of

the volume of the blister, whereas rust occupies most

of the volume of a rust blister. A fluid-filled blister may

collapse, but a rust blister will not collapse. Fluid-filled

blisters should not be included in the determination of
the rust grade.

N If rust blisters are present, the rust grade shall be

determined considering the rust blisters as visible rust.

This rating must be recorded in such a manner that it is

clear to the contracting parties that rust blisters were

present and that they were considered as visible rust

when assigning a rust grade.

N Rust undercutting at a damaged area, at a broken blister,

or at a place where the painted surface meets a rusted

area, shall be considered as visible rust in the determina-

tion of the rust grade. A dull putty knife may be used

to remove loose coating, thereby exposing the rusted

areas.

Other Considerations

Care must be exercised when determining the percen-
tage of rust on the surface.

N Some finishes are stained by rust. This staining shall not

be considered as rust.

N Accumulated dirt or other material may make accurate

determination of the degree of rusting difficult. This dirt

shall not be considered as rust.

N Certain types of dirt that contain iron or iron compounds

may cause surface discoloration that should not be mis-

taken for corrosion.

N In evaluating surfaces, consideration shall be given to the

color of the finish coating. A light surface that contrasts
with the rust may appear to have a lower rust grade than

a similarly rusted surface with a color that blends with

the rust.

Reporting

Report the area or item evaluated, the type or types
of rust distribution, the presence of rust blisters (if
applicable), and the rust grade.
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